viernes, 26 de junio de 2015

1.2 muestra



MUESTRAS
Las muestras se obtienen con la intención de inferir propiedades de la totalidad de la población, para lo cual deben ser representativas de la misma. Para cumplir esta característica la inclusión de sujetos en la muestra debe seguir una técnica de muestreo. En tales casos, puede obtenerse una información similar a la de un estudio exhaustivo con mayor rapidez y menor coste (véanse las ventajas de la elección de una muestra, más abajo).
Por otra parte, en ocasiones, el muestreo puede ser más exacto que el estudio de toda la población porque el manejo de un menor número de datos provoca también menos errores en su manipulación. En cualquier caso, el conjunto de individuos de la muestra son los sujetos realmente estudiados.

Espacio muestral

El espacio muestral del que se toma una muestra concreta está formado por el conjunto de todas las posibles muestras que se pueden extraer de una población mediante una determinada técnica de muestreo.

Parámetro o Estadístico muestral

Un parámetro estadístico o simplemente un estadístico muestral es cualquier valor calculado a partir de la muestra, como por ejemplo la media, varianza o una proporción, que describe a una población y puede ser estimado a partir de una muestra. Un estadístico muestral es un tipo de variable aleatoria, y que como tal, tiene una distribución de probabilidad concreta, frecuentemente caracterizada por un conjunto finito de parámetros.

Estimación

Una estimación es cualquier técnica para conocer un valor aproximado de un parámetro referido a la población, a partir de los estadísticos muestrales calculados a partir de los elementos de la muestra. Si se estima el suficiente número de parámetros puede aproximarse de manera razonable la distribución de probabilidad de la población para ciertas variables aleatorias.

Ejemplo

Se tiene una población de 222.222 habitantes y se quiere conocer cuantos de ellos son hombres y cuantos de ellos son mujeres. Se conjetura que cerca del 50% son mujeres y el resto hombres, pero se quiere seleccionar una muestra para determinar cuantos hombres y mujeres hay en la muestra y a partir de ahí inferior el porcentaje exacto de hombres y mujeres en la población total. La descripción de una muestra, y los resultados obtenidos sobre ella, puede ser del tipo mostrado en el siguiente ejemplo:
Dimensión de la población:
222.222 habitantes
Probabilidad del evento:
Hombre o Mujer 50%
Nivel de confianza:
90%
Desviación tolerada:
5%
Resultado
196
Tamaño de la muestra:
270
La interpretación de esos datos sería la siguiente:
  1. La población a investigar tiene 222.222 habitantes y queremos saber cuántos son hombres o mujeres.
  2. Estimamos en un 50% para cada sexo y para el propósito del estudio es suficiente un 90% de seguridad con un nivel entre 90 - 5 y 90 + 5.
  3. Generamos una tabla de 280 números al azar entre 1 y 222.222 y en un censo numerado comprobamos el género para los seleccionados.
EJEMPLO :
Si tenemos una población formada por 100 elementos y queremos extraer una muestra de 25 elementos, en primer lugar debemos establecer el intervalo de selección que será igual a 100/25 = 4. A continuación elegimos el elemento de arranque, tomando aleatoriamente un número entre el 1 y el 4, y a partir de él obtenemos los restantes elementos de la muestra.

2, 6, 10, 14,..., 98

EJEMPLO

  
En una fábrica que consta de 600 trabajadores queremos tomar una muestra de 20. Sabemos que hay 200 trabajadores en la sección A, 150 en la B, 150 en la C y 100 en la D.
solución
solución
solución
solución
                               
              

No hay comentarios:

Publicar un comentario