viernes, 26 de junio de 2015

1.4 Distribución de frecuencias


Distribución de frecuencias

En estadística, se le llama distribución de frecuencias a la agrupación de datos en categorías mutuamente excluyentes que indican el número de observaciones en cada categoría.1 Esto proporciona un valor añadido a la agrupación de datos. La distribución de frecuencias presenta las observaciones clasificadas de modo que se pueda ver el número existente en cada clase.

Frecuencia absoluta

La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico. Se representa por ni. La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N. Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria.

Frecuencia relativa

se dice que La frecuencia relativa es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento y se representa por fi. La suma de las frecuencias relativas es igual a 1, siempre y cuando no sea igual que 7 o por debajo de los 7 primeros números sucesivos.
Frecuencia relativa (fi), es el cociente entre la frecuencia absoluta y el tamaño de la muestra (N). Es decir:













f_i = \frac{n_i}{N} = \frac{n_i}{\sum_i n_i}


siendo el fi para todo el conjunto i. Se presenta en una tabla o nube de puntos en una distribución de frecuencias.
Si multiplicamos la frecuencia relativa por 100 obtendremos el porcentaje o tanto por ciento (pi)

Frecuencia acumulada

La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado. La frecuencia acumulada es la frecuencia estadística F(X≤Xr) con que el valor de un variable aleatoria (X) es menor que o igual a un valor de referencia (Xr). La frecuencia acumulada relativa se deja escribir como Fc(X≤Xr), o en breveFc(Xr), y se calcula de:

Frecuencia acumulada

La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado. La frecuencia acumulada es la frecuencia estadística F(X≤Xr) con que el valor de un variable aleatoria (X) es menor que o igual a un valor de referencia (Xr). La frecuencia acumulada relativa se deja escribir como Fc(X≤Xr), o en breveFc(Xr), y se calcula de:

                             Fc (Xr)  = MXr / N
 
donde MXr es el número de datos X con un valor menor que o igual a Xr, y N es 
número total de los datos. En breve se escribe: 

                                Fc = M / N

Cuando Xr=Xmin, donde Xmin es el valor mínimo observado, se ve que Fc=1/N, porque M=1. Por otro lado, cuando Xr=Xmax, donde Xmax es el valor máximo observado, se ve que Fc=1, porque M=N.
En porcentaje la ecuación es:
                             Fc(%) = 100 M / N
 
 

Frecuencia relativa acumulada

La frecuencia relativa acumulada es el cociente entre la frecuencia acumulada de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento. Ejemplo:
Durante el mes de julio, en una ciudad se han registrado las siguientes temperaturas máximas:
32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27

Distribución de frecuencias agrupadas

La distribución de frecuencias agrupadas o tabla con datos agrupados se emplea si las variables toman un número grande de valores o la variable es continua. Se agrupan los valores en intervalos que tengan la misma amplitud denominados clases. A cada clase se le asigna su frecuencia correspondiente. Límites de la clase. Cada clase está delimitada por el límite inferior de la clase y el límite superior de la clase.
La amplitud de la clase es la diferencia entre el límite superior e inferior de la clase. La marca de clase es el punto medio de cada intervalo y es el valor que representa a todo el intervalo para el cálculo de algunos parámetros.
Construcción de una tabla de datos agrupados:
3, 15, 24, 28, 33, 35, 38, 42, 43, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, 13.
  1. Se localizan los valores menor y mayor de la distribución. En este caso son 3 y 48.
  2. Se restan y se busca un número entero un poco mayor que la diferencia y que sea divisible por el número de intervalos que queramos establecer.
Es conveniente que el número de intervalos oscile entre 6 y 15.
En este caso, 48 - 3 = 45, incrementamos el número hasta 50 : 5 = 10 intervalos.
Se forman los intervalos teniendo presente que el límite inferior de una clase pertenece al intervalo, pero el límite superior no pertenece al intervalo, se cuenta en el siguiente intervalo.
Intervalo ci ni Ni fi Fi
[0, 5) 2.5 1 1 0.025 0.025
[5, 10) 7.5 1 2 0.025 0.050
[10, 15) 12.5 3 5 0.075 0.125
[15, 20) 17.5 3 8 0.075 0.200
[20, 25) 22.5 3 11 0.075 0.2775
[25, 30) 27.5 6 17 0.150 0.425
[30, 35) 32.5 7 24 0.175 0.600
[35, 40) 37.5 10 34 0.250 0.850
[40, 45) 42.5 4 38 0.100 0.950
[45, 50) 47.5 2 40 0.050 1
Total:
40
1
                              EJEMPLOS 
Ejemplo: Quieren conocer si un grupo de individuos está a favor o en contra de la exhibición de imágenes violentas por televisión, para lo cual han recogido los siguientes datos:
La inspección de los datos originales no permite responder fácilmente a cuestiones como cuál es la actitud mayoritaria del grupo, y resulta bastante más difícil determinar la magnitud de la diferencia de actitud entre hombres y mujeres.
Podemos hacernos mejor idea si disponemos en una tabla los valores de la variable acompañados del número de veces (la frecuencia) que aparece cada valor:
X: Símbolo genérico de la variable.
f: Frecuencia (también se simboliza como ni).
La distribución de frecuencias de los datos del ejemplo muestra que la actitud mayoritaria de los individuos del grupo estudiado es indiferente.
La interpretación de los datos ha sido facilitada porque se ha reducido el número de números a examinar (en vez de los 20 datos originales, la tabla contiene 5 valores de la variable y 5 frecuencias).
Generalmente las tablas incluyen varías columnas con las frecuencias relativas (son el número de ocurrencias dividido por el total de datos, y se simbolizan "fr" o "pi"), frecuencias acumuladas (la frecuencia acumulada es el total de frecuencias de los valores iguales o inferiores al de referencia, y se simbolizan "fa" o "na". No obstante la frecuencia acumulada también es definida incluyendo al valor de referencia), frecuencias acumuladas relativas (la frecuencia acumulada relativa es el total de frecuencias relativas de los valores iguales o inferiores al de referencia, y se simbolizan "fr" o "pa")


Ejemplo: Consideremos el siguiente grupo de datos:
La distribución de freciemcias es:
La reducción de datos mediante el agrupamiento en frecuencias no facilita su interpretación: La tabla es demasiado grande. Para reducir el tamaño de la tabla agrupamos los valores en intervalos, y las frecuencias son las de los conjuntos de valores incluidos en los intervalos:
Ahora es más sencillo interpretar los datos. Por ejemplo, podemos apreciar inmediatamente que el intervalo con mayor número de datos es el 34-39, o que el 75% de los datos tiene valor inferior a 46.
Este tipo de tabla es denominado "tabla de datos agrupados en intervalos".
Elementos básicos de las tablas de intervalos:
  • Intervalo: Cada uno de los grupos de valores de la variable que ocupan una fila en una distribución de frecuencias
  • Límites aparentes: Valores mayor y menor del intervalo que son observados en la tabla. Dependen de la precisión del instrumento de medida. En el ejemplo, los límites aparentes del intervalo con mayor número de frecuencias son 34 y 39.
  • Límites exactos: Valores máximo y mínimo del intervalo que podrían medirse si se contara con un instrumento de precisión perfecta. En el intervalo 34-39, estos límites son 33.5 y 39.5
  • Punto medio del intervalo (Mco Marca de clase): Suma de los límites dividido por dos. Mc del intervalo del ejemplo= 36.5
  • Amplitud del intervalo: Diferencia entre el límite exacto superior y el límite exacto inferior. En el ejemplo es igual a 6.
 
 
diagrama de barras

 



 

No hay comentarios:

Publicar un comentario